
Improving PDM Testability through Standards Harmonization
KC Morris, NIST*, USA

1. Introduction

Two emerging standards in the area of Product Data Management (PDM) support interoperability among
PDM systems and between PDM systems and their clients. The Object Management Group’s PDM
Enablers [4] standard supports system interoperability using a server-based architecture where the
interoperating systems could be either two PDM systems or a PDM system and a client application.
Within the STEP (formally known as ISO 10303: the Standard for the Exchange of Product Model Data)
community work is underway on a standard for the exchange of Product Management Data. One result
of these efforts is the PDM Schema developed by PDES Inc. and ProSTEP. [5] The PDM Schema is
based on several of the application specific standards emerging within STEP including the first formally
adopted one, Application Protocol 203[6], and harmonizes the PDM data definitions shared amongst
those standards. The Schema supports the interchange of PDM data between systems. The PDM
Schema and the Enablers play different roles in an enterprise-wide software system yet consistency
between them is important to allowing smooth operation of the system.[1] Furthermore, consistency
between the standards supports testing efforts in that the artifacts of testing one type of interface can be
reused in testing the other type. Specifically the data used to test the PDM Schema can be used in
defining scenarios for testing the Enablers. Vice versa, the scenarios for testing the Enablers can be
used in developing tests based on the PDM Schema. [7]

The National Institute of Standards and Technology (NIST) is contributing to these efforts through the
Testability of Interaction-Driven Manufacturing Systems (TIMS) project. The TIMS project is investigating
how the two standards—the PDM Enablers and PDM Schema—could be tested in concert to ensure
compatibility. Essential to this activity is a mapping between the standards. This paper describes the
initial mapping used and our approach to documenting the mapping in a programmatic form. The
mapping is documented using the EXPRESS-X language [2], also work in progress within the STEP
community. The complete mapping can be found at the TIMS project web site
(http://www.mel.nist.gov/msid/tims/). The remainder of this paper describes briefly how the mapping is
being used in the TIMS project, illustrates features of the mapping that add to its complexity, and
concludes with recommendations on the approach to documenting the relationship between standards.

2. Mapping Approach

The mapping is captured as a series of views on the PDM Schema. Each view contains the data needed
by one or more objects accessible using the PDM Enablers interfaces. (The terms “Enablers” and “PDM
Schema” are used hereafter to refer to the two specifications.) The views are then traversed via the
Expresso Toolkit [3] which processes EXPRESS-X and represents the views in the Common LISP Object
System (CLOS). Calls to the Enablers are generated by a LISP program. For a given data set
represented using the PDM Schema the software generates calls to the Enablers which reproduce the
system state at the time that the data was produced.

The mapping between the PDM concepts found in the Enablers and PDM Schema is contained in its own
EXPRESS-X SCHEMA_VIEW called the pdm_enablers_view which references the EXPRESS SCHEMA,
pdm_schema, containing the PDM Schema. The pdm_enablers_view contains the twenty views
described in the table below. The mapping covers the Enablers modules PdmResponsibility,
PdmProductStructureDefinition, PdmDocumentManagement and portions of the PdmFoundation module
as needed by the others. Some of these views support more than one object interface. Others support a
portion of an object interface. The views shown in bold face in the table are contained only in the
pdm_enablers_view and will be discussed in the section on Abstract Views.

* Contribution of the National Institute of Standards is not subject to copyright protection.

Table 1: Views of the PDM Schema supporting the PDM Enablers

View Enabler PDM Schema Entity

 parts PartMaster product

standard_parts PartMaster.standard_part product product_category_relationship

part_categorizations PartMaster product_related_product_category
product

part_revisions PartRevision

PartData

PartDataIteration

product_definition_formation

assemblies PartStructure

NextAssemblyUsageOccurrence

PromissoryUsageOccurrence

MakeFromUsage

product_definition_relationship

(includes
Next_assembly_usage_occurrence as
subtype)

alternates Alternate alternate_product_relationship

substitutes Substitute assembly_component_usage_subst itute

part_document_relationship PartDocumentRelationship applied_document_reference

document_product

applied_assignments --abstract-- applied_person_and_organization_
assignment

product

product_definition_formation

design_supplier_relationship DesignSupplierRelationships applied_assignments

part_supplier_relationship PartSupplierRelationships applied_assignments

object_owners ObjectOwner applied_assignments

oc --abstract-- applied_assignments

object_creators ObjectCreator oc

person_party Person person

personal_address

organization_party Organization organization

organizational_address

document_product --abstract-- document_product_association

product_definition

document_masters DocumentMaster document_product

document_revisions DocumentRevision document_product

documents_with_files DocumentIteration

DocumentFileRelationship

document_product

product_definition_with_associated_docu
ments

files File document

The basic approach to mapping Enablers onto the PDM Schema is to create a view representing each of
the objects in the Enablers. An EXPRESS-X VIEW construct captures the data needed from the PDM
Schema in order to describe the Enablers’ object. At a minimum the VIEW contains a FROM clause and
a SELECT clause. The FROM clause identifies the entity or entities to use as the source of the view; the
SELECT clause identifies the attributes from the entity and associates names to be used by the view.
The alternates view below illustrates this approach.

VIEW alternates
(* This view supports the PDM Enabler object
** Alternate
*)
FROM apr : pdm_schema.alternate_product_relationship;
SELECT

apart: string :=apr.alternate.id;
bpart: string :=apr.base.id;
name: string :=apr.name;
description: string :=apr.definition;
basis: string :=apr.basis;

END_VIEW;

The attribute “apart” gathers its data from the product entity. This data is used to identify the part master
objects which are connected through the alternate object.

3. Types of Complexity

Despite the similarity in the subject matter of the two specifications, the mapping from the PDM Schema
to the Enablers is not without complexity. In fact none of the views reflect a one-to-one mapping of a
single entity type with all of its instances to a single object in the Enablers. Seven categories of
complexity arise in the mapping as will be described below.

Implicit Joins

In the PDM mapping, the views substitutes and alternates (depicted above) map the extents for a single
entity type to a single instance of an object type; however, they pull in data values from other entity types
that are used to establish the connections between the objects. In database terminology this is known as
an “implicit join.” Thus even these most basic views, which map one entity type to one object type,
actually involve multiple entity types.

Selection

Another category of relatively simple views in the mapping contains those views resulting from a straight
forward selection of instances from the extent of a single entity type. This type of view is depicted for
parts below:

VIEW parts
(* This view supports the PDM Enabler objects:
** PartMaster.
*)
FROM

p: pdm_schema.product;
WHERE (
(* when the product is not a document *)

SIZEOF (QUERY
(c <* EXTENT (‘pdm_schema.product_related_product_category’)
| (c.name = ‘document’) AND (p IN c.products))) = 0

);
SELECT
(* PartMaster attributes *)

part_name : string := p.id ;
short_description : string := p.name;
long_description : string := p.description;

END_VIEW;

The PDM Schema represents both products and documents as products but the Enablers specification
clearly separates these types of data. The parts view implements this concept by restricting the instances
of the entity type product to only those products that are not documents. In EXPRESS-X the WHERE
clause is used to express the restriction. In order to implement this restriction the
product_related_product_category ENTITY is used. Thus both an implicit join and a selection are applied
to the data.

Unions

In some cases, we have two distinct sets of instances from the PDM Schema that represent a single
collection of objects in the Enablers. In these cases we can use the EXPRESS-X PARTITION construct
to combine the union of the two sets into a single set. In the mapping this is done for the VIEW
organization_party which unites all organizations with their address or with blank addresses if none are
contained in the dataset. The alternative to using a PARTITION in this situation is either not including
organizations without addresses or looking up each address individually in the test generation source
code which processes the mapping. The former alternative is insufficient because some organizations
may be omitted from the generated tests corrupting the results. The consequence of the latter is that, by
not capturing all the semantics of the mapping, it is subject to inconsistent implementation.

VIEW organization_party
(* This view supports the PDM Enabler object
** Organization
*)
PARTITION waddr :
(** organizations that have addresses **)
FROM org : pdm_schema.organization;

addr : pdm_schema.organizational_address;
WHERE

(org IN addr.organizations);
SELECT

name : string := org.name;
organization_type : string := org.description;
phone_number : string := addr.telephone_number;
street_address : string := addr.street_number + addr.street +

addr.postal_box; city : string := addr.town; state : string :=
addr.region;

country : string := addr.country;
mail_code : string := addr.postal_code;
e_mail : string := addr.electronic_mail_address;
id : string := org.id;

PARTITION woaddr :
(** organizations that do not have addresses **)
FROM org : pdm_schema.organization;
WHERE (

(SIZEOF (QUERY
(a <* EXTENT(‘pdm_schema.organizational_address’)
| (org IN a.organizations))) = 0)

);
SELECT

name : string := org.name;
organization_type : string := org.description;
phone_number : string := “;
street_address : string := ‘’;
city : string := ‘’;
state : string := ‘’;

country : string := ‘’;
mail_code : string := ‘’;
e_mail : string := ‘’;
id : string := org.id;

END_VIEW;

Multiple views for one object

In some cases multiple views were used to capture all the data needed for one object. For example, the
three views—parts, standard_parts, and part_categorizations—each contain the information needed for
the Enabler’s PartMaster object. The data is derived from the entities product,
product_category_relationship, and product_related_product_category.

The standard_parts view distinguishes those objects that are standard. In the Enablers standard parts
are distinguished as an attribute of the PartMaster object which is set to true. To simplify the EXPRESS-
X these flags are set using the LISP code by traversing the list of standard parts only after the PartMaster
objects have been created. This could have been expressed directly in EXPRESS-X but would have
resulted in a more complex EXPRESS-X schema.

Another reason to divide these views was that the combined view created a three way join (three entities
in the FROM clause) which was not processed efficiently. This problem could be factored out when the
EXPRESS-X standard is adopted and more robust implementations appear.

Mapping dependence on data values

While the mapping is represented in meta-data, i.e. at the schema level, it is not entirely independent of
the data. The difference in the representation of products and documents, as well as, the views
standard_parts, files, applied_assignments and its derivatives, illustrates how the semantics of the data in
the case of the PDM Schema are represented at the meta-level in the case of the Enablers. The file view
(shown below) contains a clear example of this difference of representation level.

VIEW files
(* This view supports the PDM Enabler objects:
** File
*)
FROM

df: pdm_schema.document;
WHERE (
(* The first 2 cases are instances of document_file and are
conventions for using the PDM Schema *)

(df.kind.product_data_type = ‘digital’)
OR
(df.kind.product_data_type = ‘physical’)

(* the third case is an instance of document and is established in the
AP 203 Usage Guide *)

OR
(df.kind.product_data_type = ‘cad_filename’)

);
SELECT

filename :string := df.id;
type : string := df.kind.product_data_type;

END_VIEW;

The file view is a selection of those instances of the document entity that have been assigned certain
values for the product_data_type of the instance. Differing conventions were found in the data for values
of the product_data_type attribute that indicate that the instance is indeed referring to a “computer file” in
the traditional sense. Specifically the usage conventions for the PDM Schema state that the value ‘digital’
or ‘physical’ would be used for the product_data_type attribute; however, the AP 203 Usage Guide
recommends using the term ‘cad_filename.’ Additionally, with AP 203 only the supertype document is
populated, whereas, the PDM Schema usage conventions call for the subtype document_file to be used.

The implication of this use of data to convey information that is meta-data in the other specification is that
the mapping between the two specifications may be more volatile than the specifications themselves.
Furthermore the mapping can not be finalized without regard for usage conventions on the data and as
such can not be completely specified for specifications with informal usage guidelines.

Abstract views

The schema contains three examples of abstract views that are distinguished by bold type face in the
table. The term abstract views is used to distinguish views that do not directly support an object in the
Enablers but rather support other views which directly support the objects. Both the document_product
and applied_assignment views use the EXPRESS-X construct of PARTITION to represent set unions that
consolidate instances. In these cases, the union consolidates instances are related in the PDM Schema
through different paths in the product, product_definition, and product_definition_formation triad used in
STEP to represent a specific configuration of a product. This abstract view simplifies the views that use
it, thereby clarifying them, by encapsulating a fundamental difference between the two specifications.

The document_product view shown below identifies the product, version, and document information
associated with a given document. The three partitions provide the access path to the product and
product version information from the three different underlying types of the SELECT type
product_or_formation_or_definition used in the document_product_equivalence ENTITY. (An example of
the use of the document_product VIEW is shown in the following section in the
part_document_relationship VIEW.)

VIEW document_product
PARTITION p1 :
 FROM d : pdm_schema.document_product_association;

pd: pdm_schema.product_definition;
WHERE (

(pd = d.related_product)
);
SELECT

ip : product := pd.formation.of_product;
ipdf : product_definition_formation := pd.formation;
idoc : document := d.relating_document;
master_id : string := pd.formation.of_product.id;
rev_id : string := pd.formation.id;

PARTITION p2 :
 FROM d : pdm_schema.document_product_equivalence;

p: pdm_schema.product;
pdf: pdm_schema.product_definition_formation;

WHERE (
(p = d.related_product)
AND
(pdf.of_product = p)

);
SELECT

ip : product := p;
ipdf : product_definition_formation := pdf;
idoc : document := d.relating_document;
master_id : string := p.id;
rev_id : string := pdf.id;

PARTITION p3 :
 FROM d : pdm_schema.document_product_equivalence;

pdf: pdm_schema.product_definition_formation;
WHERE (

(d.related_product = pdf)
);
SELECT

ip : product := pdf.of_product;
ipdf : product_definition_formation := pdf;

idoc : document := d.relating_document;
master_id : string := pdf.of_product.id;
rev_id : string := pdf.id;

END_VIEW;

Incomplete specification of mapping for processing convenience

The final complexity category has to do with incomplete specification of the mapping. This category, in
fact, removes complexity from the mapping at the cost of adding complexity to understanding the
mapping. An example of such a convenience is in the view part_document_relationship shown below.

VIEW part_document_relationship
(* This view supports the PDM Enabler objects:
** PartDocumentRelationship
*)
FROM

ar: pdm_schema.applied_document_reference;
dp: pdm_enablers_view.document_product;

WHERE (
dp.idoc = ar.assigned_document

);
SELECT

master_id: string := dp.master_id;
rev_id: string := dp.rev_id;

(* pvs is the set of document_reference_items which must be filtered
** for product versions
*)

pvs: set [1:?] OF document_reference_item := ar.items;
END_VIEW;

In this example the attribute pvs does not directly represent what is needed by the Enabler’s
PartDocumentRelationship interface. The pvs short cut actually addresses two complexity features. The
first is that the PDM Schema represents the relationship of a part with a document or set of documents
through a multi-valued attribute, the set “items,” whereas the Enablers express that same relationship as
multiple instances of an object relating the part and the document. While this difference is easy enough
to comprehend and encode in a programming language, it is not as easily expressed in EXPRESS-X.

The second complexity feature addresses a fundamental aspect of the relationship itself. In the PDM
Schema the documents may be related to product_definition, product_definition_formation_relationship,
product_definition_relationship, shape_aspect, shape_aspect_relationship. In practice we found only
relationships to the product_definition and used that to map the documents to the part version; however,
given a different data set which uses one of the other types of relationships our mapping would be
undefined. The test generation code that uses this mapping to generate calls to the Enablers generates
error messages in the uncovered cases. Similar to the above situation these messages would be difficult
to convey in the EXPRESS-X.

Even given our assumption that the document was related to a product_definition entity encoding that
assumption in EXPRESS-X would be more complicated than the equivalent LISP code that we use to
process the set. Below is an example of pseudo-EXPRESS-X that would convey the meaning but these
expressions are illegal EXRPESS-X and would need to be replaced by significantly more complicated
functions.

(* -- assuming select type is product_definition
part_ids: set [1:0] OF string := ar.items[*].formation.of_product.id;
ver_ids: set [1:0] OF string := ar.items[*].formation.id;
*)

4. Conclusion and Future Directions

When two standards are defined to be used in concert, such as the PDM Schema and the Enablers, there
is clearly a need to define precisely and at a detailed level how they relate to each. The Enablers
standard whole-heartedly references the STEP standards in this area (although not the PDM Schema
itself but rather its precursor, AP 203.) One of the Enablers’ modules supports importing of exchange
files based on STEP. In this case the behavior of the import operation is not defined without such a
mapping. Even with more granular access than file import in order to perform round-trip testing of
implementations supporting both standards, a mapping is necessary to define expected results for such
tests.

On the other hand, as has been shown above, such a mapping is subject to conventions on the use of
data, and in some cases an exhaustive mapping may be impractical. Despite these shortcomings,
something is better than nothing. Furthermore, formalizing the mapping definition can help to highlight
where the shortcomings are and where they aren’t, thereby simplifying the problem of implementing and
testing against a standard.

Given this state of affairs we would recommend the EXPRESS-X approach to mapping combined with
mapping guidelines which address how to handle difficult situations such as the need for extensibility and
incomplete specification. EXPRESS-X is a useful means of capturing a mapping. It allows for formal
declaration of the mapping while at the same time separating the semantic mapping for the standards
from the implementation of a particular mapping system, such as our test generation system. To improve
usability of this approach, conventions should be established which formalize how the complexity
categories described above are handled.

One thing not addressed by the mapping presented here is coverage. By design the PDM Schema and
the Enablers have different scopes. The mapping presented here only addresses a subset of their
overlapping scopes. In doing so a little effort has been made to ensure that nothing has been left out of
the mapping. The complete EXPRESS-X schema found at the TIMS homepage contains a couple views
that are intended to uncover any instance data that may have been left out as the result of a selection in
the mapping. The test generation software also checks in certain spots for uncovered data as was
described in the section on incomplete specification. TIMS has also uncovered certain constructs such
as the STEP exchange context information that does not map into an Enablers environment. Methods for
automatically and more rigorously uncovering gaps in the mapping could be established based on a
formal mapping technique such as EXPRESS-X.

5. References

1. David Starzyk, STEP and OMG Product Data Management Specifications: A Guide for Decision
Makers, August 1999, http://www.omg.org/cgi-bin/doc?mfg/99-08-02.

2. ISO TC184/SC4/WG11 N078, EXPRESS-X Language Reference Manual,
http://www.steptools.com/library/express-x/, 1999.

3. The Expresso Homepage, http://www.nist.gov/expresso, 1999.

4. PDM Enablers revised submission (including errata changes), http://www.omg.org/cgi-
bin/doc?mfg/98-02-02, 1998.

5. Version 1.1 of the PDM Schema is a pre-normative specification available from http://www.pdm-
if.org/, 1999.

6. ISO/DIS 10303-203:1994, Industrial automation systems and integration — Product data
representation and exchange — Part 203: Configuration Controlled 3D Designs of Mechanical Parts
and Assemblies. Available from ISO, http://www.iso.ch/.

7. KC Morris and David Flater, “Design of a Flexible, Integrated Testing System for STEP and OMG
Standards,”National Institute of Standards and Technology, forthcoming.

